Reading is an essential part of science literacy, but what, when, and how can we incorporate reading in the science classroom? Like many of my colleagues, I avoided relying on the textbook by engaging students in lectures, hands-on activities, demonstrations, and videos. Unfortunately, as each year passed, my students read less while I worked harder.

I wanted students to become the scientifically literate citizens envisioned in the National Science Education Standards: students who read science, enjoy reading science, and even experience the passion I feel for the natural world. However, with 65% of incoming freshmen at my school reading below the sixth-grade level, it was clear that our science curriculum, especially the textbook, did not include motivating or accessible reading for most students. To bring reading back into our science classrooms, my colleague, Ann Akey, and I designed four quarterly reading projects with yearlong literacy routines that we use successfully with our ninth-grade students, including English language learners.

An inquiry approach to literacy and science

We created these projects as part of a three-year professional inquiry into literacy in science with our colleagues at the Strategic Literacy Initiative at WestEd. The two yearlong literacy routines we developed are based on Reading Apprenticeship, an instructional framework offered by the Strategic Literacy Initiative (Schoenbach et al.)
1999) to support middle and high school student literacy in content areas. Reading Apprenticeship encourages reading in classrooms as an active problem-solving process. Students and teachers engage in a shared inquiry into literacy by taking mental risks as they read together and discuss their reading processes, confusions, and methods of resolution. Creating a classroom climate that supports inquiry is essential to both science and literacy learning. This connection to inquiry made the Reading Apprenticeship approach a natural fit in our science classrooms (Schoenbach et al. 2003).

Yearlong metacognitive conversation

To begin our classroom inquiries into science literacy, we talk about our thinking processes every day as we delve into lab procedures, graphs, data tables, and all the different “texts” of science. I model talking aloud about my own thinking processes and encourage students to “think aloud” about how they make sense of what they are doing. Through this metacognitive conversation, students learn that text includes labs, data, and their own work, and that reading is an active problem-solving process.

As this way of working becomes comfortable and routine, I teach students to record their thinking by writing down their confusions, questions, connections, clarifications, and summaries in “Metacognitive Reading Logs.” [Editor’s note: The tools and projects described in this article, including Metacognitive Logs, were created by the author and can be downloaded from the Reading Apprenticeship website at http://wested.org/stratlit.]

As a yearlong literacy routine, these logs take on different forms depending on their purpose. Some are as simple as a vertical line drawn down the center of a piece of binder paper with an “I read” heading on the left and an “I thought” heading on the right. At other times logs may contain a series of sentence stems to choose among and complete such as “I was confused by” or “This reminded me of.”

Often students are asked to write questions, short summaries, or personal connections to what they are reading. Some logs have a printed format, some are kept in spiral notebooks, and others are simply written on the edges of the reading handout itself. This routine metacognitive writing and conversation sup-
ports students throughout the year as they encounter more difficult texts and complex reading tasks. Once we establish this foundation, we are ready to expand our reading experiences.

Four nontextbook reading projects

We begin our reading projects in the first quarter with “Science in the News” (SIN), which we also continue throughout the year—along with the Metacognitive Logs—as a yearlong literacy routine. In the second quarter we introduce a nonfiction reading project and accompanying children’s science book writing project. In the third quarter students read a biography of a scientist and present Interactive Historical Vignettes (Roack and Wandersee 1993). In the fourth quarter, students read fiction books and participate in book clubs (Steineke 2002). Although we sequenced these projects to take advantage of students’ growing skills, motivation, and stamina, any of these projects can be used independently of the others (Figure 1).

Science in the News

To help students read, evaluate, and discuss scientific issues and findings that appear in popular media, we developed SIN, a format to help students have an informed scientific perspective. Figure 2 summarizes the student objectives of SIN.

We assigned the first SIN as homework, providing a structured report format and instructions to find a science article in a newspaper or magazine (Figure 3). We thought our highly structured report format would help students read deeply. Looking at student work samples, however, we realized that even with relatively accessible text, such as the daily newspaper, students were not able to read and respond to the science without more help. The report format was not enough support; we had to teach our students how to read science in the news.

I started by finding an article to read and discuss in class. In small groups, students read the article and completed a SIN reading together, discussing how they approached highlighting the methods and results and how they constructed summaries. Teams shared their results with the whole class while I recorded their reading strategies on an overhead. Later we read anonymous student work samples, evaluating them using our new understandings of how to read SIN.

Our efforts paid off. With practice, students are able to do the SIN reading activities independently. Teams discuss the science in the reading, instead of how to read the science. Working together, students become expert readers of science in the news. More importantly, we are learning that science literacy is not a fixed object; people are not good readers or nonreaders, but evolving readers. Figure 4 (p. 26) shows the grading rubric for this project.

Read a nonfiction book and write a children’s science book

In the fall our classes make a trek to the school library’s nonfiction science section. We give students a chart that describes where science topics can be found and let students look for a book that interests them. Once they find one, we negotiate. Because our goals for this project are to build fluency, stamina, and motivation as well as general science knowledge, our focus is helping students find books that genuinely interest them and that are not too difficult. As a result, I start to see science-based library books appearing at Sustained Silent Reading—20 minutes of reading a
Figure 3

Science in the News report student handout.

Name:__
Period:__
Month:__
Topic:__
Due date:__
Internet use (circle one):

No Yes (any reputable source) Yes (Newsbank only)

Directions:
1. Find an article about scientific research/observations that was published in a
 newspaper, magazine or journal during the month listed above. The article must
 be at least 200 words long.
2. Read the article and write down what the scientists were trying to find out (what
 question were they trying to answer)?
3. Underline, in two different colors, the following information (color in the boxes
 to make a key).
 ☐ The methods the scientists were using (procedure) and the type of data
 collected.
 ☐ What the scientists found out (results and conclusion).
4. Answer the questions below.
5. Staple the article, or a copy of it, to the back of this page.
6. Turn in this assignment on or before the due date listed above.

Questions:
1. a) Title of the article___
 b) Topic of the article__
 c) Author(s)___
 d) Source of article (name of newspaper, magazine, address/URL and name of
 internet site)__
2. a) Write the full name and title (if given) of a person quoted in the article. (If no
 one is quoted, choose a different article.)
 b) Why was this person quoted? What is his/her expertise?
3. How did scientists obtain the evidence on which this article is based? What steps
 did they follow, what types of tools did they use, and what type of data did they
 collect?
4. Draw a diagram of the important information explained in this article. Label your
 drawing with words/descriptions.
5. Write a summary of this article. Your summary must be at least four complete
 sentences in your own words. Do not use direct quotes from the article.
6. Do some more thinking about this article. Write at least one “on my own” question
 that you would like to ask the author or the scientists involved.

day, a schoolwide policy—instead
of magazines and newspapers.

During the next four to five weeks
students complete most of their read-
ing outside of class with the support
of teacher-generated Metacognitive
Logs designed specifically for nonfic-
tion text. I collect and check these logs
weekly to give students written en-
couragement on their progress. When
they finish reading, students demon-
strate their understanding of the topic
by writing and illustrating a children’s
science book on the same subject.

Tapping into students’ interests
produces some amazing results and
encourages student engagement. One
English language learner filled her
book with photos and descriptions of
her own beloved parrots. Another stu-
dent, who produced little other work
during the year, wrote a book about
lizards, which he proudly shared.

Many students chose their children’s
book projects (from their
science class!) to include in their schoolwide assess-
ment portfolios as evidence for meet-
ing reading and writing expectations.

Read a scientist’s biography
and present an interactive
historical vignette

Empowering students with personal
knowledge about real scientists and
the work they do is our primary
goal for the biography project. For
instance, during a class discussion of
the Tacoma Narrows Bridge failure,
a student who had just finished Jo-
seph Strauss’ biography for his read-
ing project eagerly explained that
Strauss, who designed the Golden
Gate Bridge, planned for the bridge
to flex up and down several feet to
prevent a failure like the Tacoma
Narrows disaster.

When we initially introduced the
biography project, we reencountered
a familiar problem. We lacked mo-
tivating and accessible text to read.
Our library had a scant collection of
dusty, unused volumes of “classics.”
Over the next three years, we added
biographies of women scientists,
such as A Feeling for the Organism:
The Life and Work of Barbara McClintock (Keller 1983); scientists of color, such as Charles Drew: Life-Saving Scientist (Shapiro 1997); contemporary researchers, such as The Beak of the Finch (Weiner 1994) about the work of Peter and Rosemary Grant; and the accessible biography series Great Minds of Science and Scientists Who Changed the World. For a full list of the books we have added, visit http://wested.org/stratlit and click on “Resources,” then “Resources for Teachers,” and finally “Extensive Reading in Science.”

Once we had enough texts involving scientist biographies that students could and would read independently, students could do most of the reading outside of class. We developed new Metacognitive Log prompts to help students make connections to the influence of culture and society on scientific thought. Once students finish their reading, they write 250-word vignettes about a major event in the scientist’s life. They dress like their scientists, bring props representing the scientists’ work, and read their vignettes in small groups. The “scientists” ask their peers in these small groups to discuss opinions about their work and discoveries.

As students present I walk around and listen. Within groups, students keep track of each other’s presentations by using a checklist to assure that all required aspects of the scientist’s life are covered. Students are asked to use this checklist to prompt the speaker if omissions occur, thus creating a collaborative approach to discovering the scientist’s achievements with the reporting student serving as resident expert.

This is my favorite literacy activity of the year. I give extra credit if students make and wear a life-size mask of the scientist’s face for their presentation. Later, I hang the masks around the room to create a gallery of scientific greats “participating” in class for the remainder of the school year. Allowing students to assume identities of scientists is a powerful tool to help them connect to the process of scientific discovery and the impact of political and religious beliefs on the history of scientific thought, as related to Content Standard G, The History and Nature of Science (NRC 1996, p. 200).

Read a fiction book with good science content and participate in a book club

Do you remember reading something that hooked you on science—a novel, or even a comic book? This last project elicits raised eyebrows—popular fiction in a

FIGURE 4

Science in the News rubric.

<table>
<thead>
<tr>
<th>Selection of article</th>
<th>Beginning</th>
<th>Developing</th>
<th>Proficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not about science.</td>
<td>Includes science content.</td>
<td>Includes scientific research.</td>
<td></td>
</tr>
<tr>
<td>No authority quoted.</td>
<td>Authority quoted.</td>
<td>Authority quoted.</td>
<td></td>
</tr>
<tr>
<td>Source of article not stated.</td>
<td>Source stated.</td>
<td>Reliable source stated.</td>
<td></td>
</tr>
<tr>
<td>Fewer than 200 words.</td>
<td>200 words or more.</td>
<td>200 words or more.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Understanding of article</th>
<th>Beginning</th>
<th>Developing</th>
<th>Proficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highlighting misses important points and/or includes extraneous material.</td>
<td>Most highlighting correctly identifies important points.</td>
<td>Highlighting shows understanding of scientific methodologies and results.</td>
<td></td>
</tr>
<tr>
<td>Summary misses key points and/or includes nonessentials.</td>
<td>Summary shows understanding of most key points.</td>
<td>Summary shows understanding of all key points.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Completion</th>
<th>Beginning</th>
<th>Developing</th>
<th>Proficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>One or more section not attempted and/or partial responses to prompt.</td>
<td>All sections attempted.</td>
<td>All sections completed.</td>
<td></td>
</tr>
<tr>
<td>Responses do not always address prompt.</td>
<td>Responses address all aspects of the prompt.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quality</th>
<th>Beginning</th>
<th>Developing</th>
<th>Proficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responses show limited understanding of the article.</td>
<td>Responses show partial understanding of the article.</td>
<td>Responses show evidence of complete understanding of the article.</td>
<td></td>
</tr>
<tr>
<td>Responses are not written in complete sentences.</td>
<td>Most responses are written in complete sentences.</td>
<td>All responses are written in complete sentences.</td>
<td></td>
</tr>
<tr>
<td>Responses are unorganized, hurried, scattered, or messy, with little evidence for active engagement in the project.</td>
<td>Responses are poorly organized and show some engagement, with attempts at responding thoughtfully.</td>
<td>Responses are organized, show attention to detail, thoughtfulness, and active engagement in the project.</td>
<td></td>
</tr>
<tr>
<td>Question is unrelated to or answered in the article.</td>
<td>Question is related to article but tangential or vague.</td>
<td>Question is related to article and thoughtful.</td>
<td></td>
</tr>
</tbody>
</table>
Students bring these journals with them to their book club and use them as the basis for group discussions that often lead to new insights about the far-reaching impact of science in their lives. As they contribute to scientific and literary conversations with their peers, students see themselves as successful readers of science. (For examples of books, see Figure 5.)

Making progress

Three years into our inquiry, one thing is clear: Our students have become more capable and more willing science readers. Although many students read well below grade level, they could still become science readers. Similarly, while we are not reading teachers, we can teach students to read science. Our goals in beginning this inquiry were to improve student’s attitudes toward science reading and give students the tools to become lifelong science readers.

We made significant progress toward establishing the kind of scientific literacy that “expands and deepens over a lifetime, not just during the years in school” (NRC 1996, p. 22). By the end of the school year, reading becomes an established routine in my classroom, and students’ attitudes about reading change dramatically. When I announce the first book project in the fall, the general response is “What, we have to read the whole book?” By the time the last project rolls around in late spring, students say, “Read another book? Okay, I can do that.”

Janet Creech (jcreech@seq.org) is a teacher at Woodside High School, 199 Churchill Avenue Woodside, CA 94062; and Gina Hale (ghale@wested.org) is a professional development associate at WestEd, 300 Lakeside Drive, 25th Floor, Oakland, CA 94612.

References

Reading Apprenticeship. http://wested.org/stratlit. Strategic Literacy Initiative at WestEd.

FIGURE 5

Examples of book club options.

Low reading level book choices

A Bone From A Dry Sea	Peter Dickinson
Julie of the Wolves	Jean George
The Missing Gator of Gumbo Limbo	Jean George
There’s An Owl in the Shower	Jean George
Shark Beneath the Reef	Jean George
Clan Apis	Jay Hosler

Medium reading level book choices

The Core	Dean Wesley Smith
The Dechronization of Sam Magruder	George Simpson
The Perfect Storm	Sebastian Junger
Singularity	William Sleator
The House of the Scorpion	Nancy Farmer

High reading level book choices

The Andromeda Strain	Michael Crichton
Jurassic Park	Michael Crichton
Toxin	Robin Cook
Rendezvous with Rama	Arthur C. Clarke

Science class? When considering what students should read, we uncovered a closely guarded secret: Science people love to read good fiction about science. When reading fiction, we engage with the ideas of science in imaginative and enjoyable ways that we might not when reading for information. [Editor’s note: For more on science fiction in science class, see “Science Fiction and Scientific Literacy,” p. 38, in this issue of The Science Teacher.] We wanted students to have access to this experience while providing opportunities for them to evaluate and discuss the scientific ideas they encountered. Our critical reading and discussion goals make the book clubs our most demanding project, which is why we save it for last.

Book clubs are discussion groups of four to five students who have chosen to read the same book. To facilitate book choice, I bring copies of the books to class for students to look through and talk about. They rank first, second, and third choices on an individual, reading-level appropriate list. I use their choices to arrange book club groups. The book clubs meet twice a week during 100-minute blocks, plan their own reading schedules, and discuss their books. Each student assembles and decorates a reading journal specifically designed for fiction narrative. New Metacognitive Log prompts help students make connections to situations or characters in the novel and analyze the science presented in the story.
Natural Fit was born from a desire to help people to exercise and rediscover their youthful agility, whatever their current starting point. When you join the Gym and Classes, we'll start with a simple screening that will assess your mobility, stability and natural programme. We'll then provide you with a guided, stepped method to improve your day to day, natural functional movement. Whether you exercise regularly, have had previous injuries or The Natural-Fit LT uses a reduced weight, smaller profile oval. The LT is designed for those looking for a reduction in weight or a smaller gripping surface (for those with smaller hands). The LT is more than 17% lighter than the original Natural-Fit -- it weighs just 20 ounces (about 5 ounces more than a standard round-tube handrim). Size and Coating Options: Customize Your Handrim. Both the Natural-Fit and the LT Fit on Almost All Standard Wheels: 20", 22", 24", 25", & 26" standard spoke wheels. See more ideas about Fitness inspiration, Fit black women, Fitness motivation. Limes promote a healthy digestive tract. Mint is a natural appetite suppressant that also aids in digestion. Fitness Motivation Fitness Quotes Fitness Humor Workout Quotes Workout Humour Exercise Quotes Exercise Motivation Workout Routines Workout Ideas. Encouragement.