Over 85% of the world’s oyster reefs have been lost in the past two centuries, triggering a global effort to restore shellfish reef ecosystems and the ecosystem services they provide. While there has been considerable success in re-establishing oyster reefs, many challenges remain. These include: high incidence of failed restoration, high cost of restoration per unit area, and increasing stress from climate change. Positive interactions occur when one organism makes the local environment more favorable for another organism. This can happen directly, such as when canopy-forming macroalgae shade the intertidal zone and reduce desiccation stress for other organisms (Thomsen et al., 2018). Complications of a non-native oyster introduction: facilitation of a local parasite. Marine Ecology Progress Series, 325, 145–152.CrossRefGoogle Scholar. Bougrier, S., Tigé, G., Bachère, E., & Grizel, H. (1986). Development of a PCR assay for detection of the oyster pathogen Bonamia ostreae and support for its inclusion in the Haplosporidia. Diseases of Aquatic Organisms, 42, 199–206.CrossRefPubMedGoogle Scholar. Carnegie, R. B., Burreson, E. M., Hine, P. M., Stokes, N. A., Audemard, C., Bishop, M. J., & Peterson, P. H. (2006). Bonamia perspora n. sp. (Haplosporidia), a parasite of the oyster Ostreola equestris, is the first Bonamia species known to produce spores. Journal of Eukaryotic Microbiology, 53, 232–245.CrossRefPubMedGoogle Scholar. Copyright and Disclaimer Privacy Policy Contact.