Development of the Fischer-Tropsch process: From the reaction concept to the process book

C. Boyer¹, J. Gazarian², V. Lecocq², S. Maury², A. Forret¹, J.M. Schweitzer¹ and V. Souchon³

¹ IFP Energies nouvelles, Process Design and Modeling Division, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize - France
² IFP Energies nouvelles, Catalysis and Separation Division, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize - France
³ IFP Energies nouvelles, Physics and Analysis Division, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize - France

e-mail: christophe.boyer@ifpenergiesnouvelles.fr

Corresponding author

Abstract
The process development by IFP Energies nouvelles (IFPEN)/ENI/Axens of a Fischer-Tropsch process is described. This development is based on upstream process studies to choose the process scheme, reactor technology and operating conditions, and downstream to summarize all development work in a process guide. A large amount of work was devoted to the catalyst performances on one hand and the scale-up of the slurry bubble reactor with dedicated complementary tools on the other hand. Finally, an original approach was implemented to validate both the process and catalyst on an industrial scale by combining a 20 bpd unit in ENI’s Sannazzaro refinery, with cold mock-ups equivalent to 20 and 1 000 bpd at IFPEN and a special “Large Validation Tool” (LVT) which reproduces the combined effect of chemical reaction condition stress and mechanical stress equivalent to a 15 000 bpd industrial unit. Dedicated analytical techniques and a dedicated model were developed to simulate the whole process (reactor and separation train), integrating a high level of complexity and phenomena coupling to scale-up the process in a robust reliable base on an industrial scale.

Résumé
Le développement par l'IFP Energies nouvelles (IFPEN), ENI et Axens d'un procédé Fischer-Tropsch est décrit. Ce développement est basé sur des études procédés en amont pour choisir le schéma de procédé, la technologie du réacteur, les conditions opératoires et en aval pour capitaliser tout le travail de développement dans un guide de procédé. Un effort particulier a été porté, d'une part, au développement de catalyseur, et d'autre part, à l'extrapolation du réacteur de type colonne à bulles stéréo en utilisant une combinaison d'outils expérimentaux complémentaires. Une approche originale a été mise en œuvre pour valider à la fois le processus et le catalyseur à l'échelon industriel en combinant une unité de 20 bpd en raffinerie de Sannazzaro, ENI, avec des mock-ups froids équivalents à 20 et 1 000 bpd au sein de l'IFPEN et l'implémentation d'un spécial outil de validation (LVT) qui reproduit l'effet combiné du stress de réaction et du stress mécanique équivalent à une unité industrielle de 15 000 bpd. Des techniques analytiques dédiées et un modèle dédié ont été développés pour simuler l'ensemble du processus (reacteur et chaine de séparation), intégrant un haut niveau de complexité et de couplage de phénomènes pour échelonner le processus dans une base robuste et fiable à l'échelle industrielle.
été mise en place pour valider le procédé et le catalyseur à l'échelle industrielle, combinant un pilot de capacité de 20 bpd, basé dans la raffinerie ENI de Sannazzaro, des colonnes à bulles de 20 à 1 000 bpd de capacité situées à l'IFPEN et un réacteur autoclave Large Validation Tool (LVT) qui permet de reproduire l'effet combiné des réactions chimiques et des cisaillements sur le catalyseur à l'échelle d'un réacteur de 15 000 bpd. Des techniques analytiques dédiées ont été développées et un simulateur a été mis au point pour reproduire la section réactionnelle couplée à la section de séparation intégrant l'ensemble des phénomènes couplés pour garantir l'extrapolation du procédé de façon robuste et fiable.

© C. Boyer et al., published by IFP Energies nouvelles, 2016

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.