The FAST Project

The FAST project (Flood Activated Sedimentation and Tectonics) was a geology research project funded by ICR's NCSF (National Creation Science Foundation). It began in 2006 and involved about a dozen geologists and geophysicists, both ICR staff, students, and adjunct scientists. The scientists involved in the FAST project were:

- Dr. Steven A. Austin
- Dr. Clarence Burg
- Dr. John H. Whitmore
- Dr. Tim L. Clarey
- Mr. Raymond Strom
- Dr. John Morris
- Mr. Paul Garner
- Mr. Bill Hoesch
- Mr. Van Wingerden
- Mr. D. D. Stansbury
- Mr. Roger Sigler

Dr. Steven Austin directed the project, which addressed catastrophic processes distinctive during the Genesis Flood that left features that can be studied in the rock strata yet today. Austin defined four subprojects in the following manner and provided a brief status of each as of January 21, 2010:

Power word 1: Supercurrent—A very large mass of rapidly moving ocean water that was able, because of speed and turbulent flow, to sweep up and move enormous quantities of sediment within a current.

Power sentence 1: During the global Flood described in Genesis, the ocean was propelled as supercurrents over large continental areas as the deep, fast-moving ocean mass swept up, moved and deposited sand in enormous dune-like structures, producing widespread sandstone layers.

Power abstract 1: FAST researchers participating in the Coconino Sandstone project are documenting the sand-grain composition, the sand-grain texture, and large-scale current structures in sandstone in the southwestern United States. The researchers believe the evidence verifies the notion that the grains, textures, and structures were formed under fast-moving ocean waters, not in a desert sand dune environment by wind. The current structure being studied is called cross-bedding and is characteristic of the Coconino Sandstone of Grand Canyon. A deep-water supercurrent flowed southward at about three feet per second over the Grand Canyon Region in Utah, Arizona, and New Mexico. The sandstone stratum even extends into Colorado, Kansas, Oklahoma, and Texas. The supercurrent deposited an estimated 10,000 cubic miles of sand over an area of 200,000 square miles.

Power word 2: Superflow—An enormous mass of slurry composed of about half sediment and half entrained ocean water like a giant mudflow over the ocean floor.
developed a young-earth explanation for the age of the earth. Derived from radioisotope dating for rocks in the Grand Canyon, and was a member of the RATE project, which critiques conventional dates for the waters in the basins of northern Arizona, Utah, New Mexico, and Colorado. He critiqued conventional long-age dates for the formation of the Limestone of Grand Canyon, which invalidated the conventional explanation for its formation in an ancient, placid sea. He and his students were responsible for developing a young-earth catastrophic Flood model for the formation of the Scabland of eastern Washington, the Snake River plain in Idaho, and the Santa Cruz River of Argentina.

Power abstract 3: During the time of the rapid post-Flood glaciation, enormous meltwater floods were water trapped under the ice and from temporary lakes marginal to the ice. FAST research is focused on diagnostic of catastrophic flood flow: drumlins, rat-tails, and streamlined erosional residuals. Research landscape in British Columbia. FAST researchers also have experience with megaflood evidences in the Scabland of eastern Washington, the Snake River plain in Idaho, and the Santa Cruz River of Argentina.

Power word 4: Superfault—A fracture within the earth along which there has been both extremely large displacement during a single catastrophic event.

Power sentence 4: During the global Flood, gigantic blocks of earth’s crust collapsed along rupture surfaces on superfaults, with displacement being so far and so fast that friction actually liquefied and melted rock!

Power abstract 4: FAST research is demonstrating that modern faults do not slip very far or very fast as ancient faults. Modern magnitude 8 earthquakes typically have thirty feet of displacement, with the ruptured broken rock powder by the friction. No melted rock is produced by modern magnitude 8 earthquakes. A earthquakes occurred on fault surfaces where displacements exceeded thousands of feet in a single event. These rupture events produced superearthquakes on superfaults. Superfaults do not have just rock powder, but evidences of liquefied and melted rock phases within the fault surface. Therefore, friction generated in ancient faults more, and heat could not be conducted away from the fault surface fast enough—so fault rocks were scientists are studying liquefied rock on fault surfaces in mountains east of Yellowstone (Heart Mountain detachment faults) and melted rock in faults on Kodiak Island, Alaska (Border Ranges Fault Zone). Colossal collapse events were associated with the global Flood.

The FAST project was disbanded as a formal ICR research effort in 2010, but several of the individual researchers continued to conduct field work and report on their findings in various journals and conferences. Prior to the FAST project, Austin completed multiple research projects during his long tenure as Research Scientist at ICR. His interests included major geology studies at Grand Canyon, Mount St. Helens, Yellowstone National Park, Alaska, Argentina, and Israel.

He and his students were responsible for developing a young-earth catastrophic Flood model for the formation of strata exposed at Grand Canyon. He discovered an extensive layer of fossilized nautiloids midway down the Limestone of Grand Canyon, which invalidated the conventional explanation for the its formation in an ancient, placid sea. He developed an explanation for the rapid formation of Grand Canyon by the catastrophic release of er waters in the basins of northern Arizona, Utah, New Mexico, and Colorado. He critiqued conventional dates derived from radiometric dating for rocks in the Grand Canyon, and was a member of the RATE project.
Dr. Austin made numerous trips to Mount St. Helens before and after it erupted in 1980, and investigated geologic processes that supported a catastrophic Flood model, such as rapid erosion of solid rock; deep sedimentary layers; and the development of fossil forests from upright tree layers in the bottom of Spirit Lake. This research on uplifted tree layers led to a revision to the conventional explanation for the formation of the Yellowstone National Park.

Dr. Austin’s interest in Yellowstone National Park was mainly centered on the processes associated with 30-mile diameter caldera located there. He extended his studies from Mount St. Helens to Yellowstone and Mammoth Lakes to understand the roles volcanoes played in the events of the Genesis Flood. He found that the volume of rock erupted from the explosive volcano in Yellowstone (Huckleberry Ridge Tuff) was 2,500 times greater than that from Mount St. Helens. The fallout also covered an area many times larger. The amount of blowoff from Huckleberry Ridge and Lava Creek in Yellowstone, Long Valley in Mammoth, Crater Lake, and Mount St. Helens over time illustrated the declining power with time of explosive eruptions in the Sierra Nevada.

Dr. Austin and Dr. John Baumgardner explored the tectonic cataclysms on the western margin of North America. Austin’s field activities in the Sierra Nevada, the Cascades, and Wrangellia in Alaska, and Baumgardner’s modeling studies with TERRA provided ample evidence for massive plate motions and upheavals that are believed to have occurred during the Genesis Flood. The driving force for plate motions was hypothesized to be density differences between the earth’s lower crust and the mantle that led to catastrophic sinking of crustal plates. These motions led to circulations in the mantle and the formation of mid-ocean ridges and volcanoes.

Dr. Austin also traveled to Israel several times to help find Sodom and Gomorra and identify earthquake faults in the Dead Sea area. He located a north-south fault that runs through “the cities of the Plain” at the southeastern end of the Dead Sea and may provide an explanation for the eruption of fire and brimstone that destroyed Sodom and Gomorra. Recently, after leaving ICR, he located a north-south fault on the western side of the Dead Sea near Masada that may have occurred at the time of Christ’s crucifixion, leading to several hours of darkness from the dust thrown into the air.

Dr. Austin worked closely with Dr. Russell Humphreys on estimating the age of the earth from the salt in the ocean. They considered the sources and sinks of salt entering and leaving the ocean and how low it may have taken. They estimated the maximum age of the oceans from its salt content to be less than 50 million years, giving the benefit to all assumptions made by evolutionary scientists. This is much greater than the 4.5 billion years calculated by conventional means.

Dr. Austin worked closely with Dr. Baumgardner on the tectonics of the earth, and especially in the western United States. Dr. Baumgardner published a number of articles on his numerical modeling studies of tectonics and the Flood, and looked at the effects on mountain building in the Sierra Nevada and Alaska.

In addition to his major contributions to the RATE project, Dr. Andrew Snelling also explored the effects of accelerated decay on the formation of granites. He found that the rapid formation of radiohalos also implied rapid cooling of granites. The rapid cooling of granite plutons in the Sierra Nevada and elsewhere requires a major revision to the theory of mountain building. Dr. Snelling reported on his various research projects in several articles and in a two-volume set of books entitled Earth’s Catastrophic Past.

References

water reservoirs. The earth, there was no wind circulation and no rain, only a mist that watered the ground daily. Underneath the earth lay vast underground, were shallower, the lands lower and more extensive than today. Because the greenhouse effect kept temperatures the same throughout, a water vapor “canopy” in the upper atmosphere created a greenhouse effect, making the entire earth a tropical paradise. The oceans, impact, be this the availability of an indu

The ICR flood geology theory relates the events of the Biblical Flood as follows: Before the Flood, plans for any risks which are most likely to occur. For example, in most research projects the availability of data can have a significant

For each risk estimate the impact it will have on your project, and how likely it is to occur. You should consider setting up contingency

With an initial plan in place, it is worth looking at each of the tasks and milestones to identify any risks that might be present.

Some students with highly complex projects may find project management software useful, and many institutions offer training to use this

characteristics of earth’s sedimentary rocks and rock layers, and testing theories for the rapid underwater deposition of sand and mud

undertaken to further investigate the implications, processes, and results of the Flood, from intricately analyzing the Genesis account for its

with Dr. Austin for his continued management of the Flood-Activated Sedimentation and Tectonics (FAST) project. The FAST project was

initiative to promote quality research, has awarded its first grant to eminent geologist Dr. Steve Austin. NCSF has signed a major contract

professor at a southern university and entitled “Numerical Simul... Research, Dallas, TX: Institute for Creation Research.

ICR’s latest geologic research has gone under the banner of FAST, or Flood-Activated Sedimentation and Tectonics. Numerous FAST projects are currently investigating specific questions under the sponsorship of the National Creation Science Foundation (NCSF), the research wing of ICR. Some are field studies, and others are vital theoretical and computer simulation projects, which together have the potential to add much to our understanding of Flood geology. One funded project is already underway, directed by a mathematics professor at a southern university and entitled "Numerical Simul... Research, Pittsburgh, PA: Creation Science Fellowship, 323-334.

As a federally recognized 501(c)(3) nonprofit ministry of the USA, all gifts to ICR are completely tax deductible to the fullest extent allowed by U.S. law.

ICR's latest geologic research has gone under the banner of FAST, or Flood-Activated Sedimentation and Tectonics. Numerous FAST projects are currently investigating specific questions under the sponsorship of the National Creation Science Foundation (NCSF), the research wing of ICR. Some are field studies, and others are vital theoretical and computer simulation projects, which together have the potential to add much to our understanding of Flood geology. One funded project is already underway, directed by a mathematics professor at a southern university and entitled “Numerical Simul... Research, Pittsburgh, PA: Creation Science Fellowship, 323-334.

As a federally recognized 501(c)(3) nonprofit ministry of the USA, all gifts to ICR are completely tax deductible to the fullest extent allowed by U.S. law.

ICR's latest geologic research has gone under the banner of FAST, or Flood-Activated Sedimentation and Tectonics. Numerous FAST projects are currently investigating specific questions under the sponsorship of the National Creation Science Foundation (NCSF), the research wing of ICR. Some are field studies, and others are vital theoretical and computer simulation projects, which together have the potential to add much to our understanding of Flood geology. One funded project is already underway, directed by a mathematics professor at a southern university and entitled “Numerical Simul... Research, Pittsburgh, PA: Creation Science Fellowship, 323-334.