Dementias: biological bases and clinical approach to treatment

Ed: Govoni S, Bolis CL, Trabucchi M
Springer-Verlag Hong Kong Ltd., 1702 Tower I, Enterprise Square, 9 Sheung Yuet Road, Kowloon, Hong Kong
HK$954.00, pp 308, ISBN 88 470 0048 3

Dementia has evolved from a forgotten disease to one receiving public attention and professional interest with prospects for treatment and prevention. Advances in our understanding of dementia have revealed its multiplicity. *Dementias: Biological Bases and Clinical Approach to Treatment* is a multi-author book that comprises 15 chapters written by geriatricians, neurologists, psychogeriatricians, pharmacologists,
neurochemists, neuroscientists, sociologists, and philosophers from Europe and North America. Some chapters are written by international authorities such as Vladimir Hachinski, who writes on vascular dementia, and Jeffrey Cummings, who writes on neuropsychiatric symptoms in dementia patients.

Dementias: Biological Bases and Clinical Approach to Treatment starts with three chapters covering the epidemiology, biological basis, and classification of dementias. Following these are discussions on the various forms of dementia: Alzheimer’s disease, vascular dementia, dementia with Lewy bodies, frontotemporal dementia, and pseudodementia. We learn that Alzheimer’s disease is no longer regarded as a single disease but rather a complex syndrome with heterogeneous aetiologies and manifestations. In addition, a broader concept of vascular cognitive impairment is formulated as a new approach to vascular dementia with emphasis on early detection, treatment, and prevention. A chapter is devoted to dementia with Lewy bodies—an important clinical condition to recognise, because of its potential beneficial therapeutic response to cholinesterase inhibitors and the sensitivity of patients with this form of dementia to neuropharmacological agents. Polypharmacy is emphasised as the most common cause of potentially treatable dementia. The symptomatology of dementia is reviewed in two chapters: one on neuropsychiatric symptoms and the other on non-cognitive symptoms, which may well be underreported. The treatments of Alzheimer’s disease—both pharmacotherapeutic and non-pharmacological—are also reviewed concisely.

Although the stated mission of the book is “to help us remember...that science and technology can cope with the needs of the demented”, the editors nevertheless realise that science has yet to be supplemented by art to enable one “to recognize, care for and help the person inside the demented patient.” Accordingly, the book concludes with chapters devoted to the art of care—namely, on prosthetic life care at home or in institutions, economic aspects, and ethical issues.

Realising the limitations of the traditional custodial and current biomedical models of the care of those with dementia, the authors advocate a socially interactive scheme. Their scheme represents a people-oriented and programme-based approach in the presence of a supportive and therapeutic environment, and with a focus on physical space as a human living space rather than a staff working space. On the economic side, the book reveals that the money spent on aids (such as adult diapers) equals that spent on drugs, and that one fifth of the cost allocated for drugs is spent on sedatives. One might wonder that of those with dementia, how many have their associated geriatric problems—incontinence and confusion—assessed and properly managed? The final chapter focuses on some ethical issues about caring for a demented person. Should the patient be told the diagnosis? What do we mean by the term ‘competence’? The book suggests that this term be abandoned and replaced by specific capacities, such as communicative capacity, decisional capacity, and self-care capacity.

Dementias: Biological Bases and Clinical Approach to Treatment is comprehensive, well illustrated, and well referenced. However, an index section is missing. Many abbreviations have been used, but while commonly used abbreviations such as DSM-IV and CJD can readily be deciphered, it would be difficult to understand what ‘PHFs’ would mean to the cursory reader. It would be better to have a list of abbreviations at the back. Some abbreviations are also not used consistently throughout the book—for example, vascular dementia has been abbreviated as VD and VaD in different chapters of the book.

I would recommend this book to all disciplines active in the field of dementia and especially to those who are committed to helping and caring for dementia patients.

Dr TK Kong
Department of Medicine and Geriatrics
Princess Margaret Hospital
Laichikok, Hong Kong
The otolaryngologist is a doctor who treats ENT diseases. The doctor's work is connected with the organs of hearing and smell, as well as head, neck and throat. Let's look at the peculiarities of the otolaryngologist's work, what diseases the doctor treats and when to treat it. The otolaryngologist is a doctor who specializes in the diagnosis and treatment of various diseases that are associated with ENT organs, that is ears, throat, head, nose, neck. Regular examinations in the otolaryngologist provide an opportunity to monitor the health of the ENT organs and maintain it at a high level. This new publication entitled "Atlas of Hearing and Balance Organs" is a simple yet original approach to anatomical investigation and imaging. Let us list a few of the most relevant aspects of the book: - a guide for otolaryngologists, neurologists, anatomists, and radiologists; - valuable teaching material for this difficult-to-explore area; - assistance the investigation of temporal neuralgia and otalgia, early diagnosis of neurinoma, otosclerosis, cholesteatoma, and tumoral formations, though limited in size, from the onset of clinical signs; - easier exploration, regardless of the state. (From Leblanc A. Atlas of Hearing and Balance Organs: A Practical Guide for Otolaryngologists. France: Springer-Verlag; 1999, with permission.) Movement in any given direction will generate a slow compensatory eye movement in the opposite direction. For example, a right head turn generates a slow compensatory left eye movement because of the simultaneous stimulation of the right horizontal canal and the inhibition of the left horizontal canal. With downward head movements, the anterior canals are excited while the posterior canals are inhibited to generate compensatory upward eye movements. Sense of hearing Sound is created by vibrations Ability to hear sound waves depends on volume, pitch, and other acoustic properties Sound waves must be of sufficient amplitude to move the tympanic membrane and have a frequency capable of stimulating the hair cells in the organ of Corti (spiral organ) (Figure 15-13) Basilar membrane width and thickness varies throughout its length. In normally hearing individuals, sound travels down the auditory canal and vibrates the tympanic membrane these vibrations are amplified by the middle ear ossicles (malleus, incus, stapes) and are transmitted to the oval window of the cochlea varying pressure on the fluid in the cochlea causes movement of the basilar membrane hair cells housed within the organ of Corti (which rests on the. Balance Testing Romberg’s test: patient stands upright with feet together, eyes closed, and arms folded in front of chest. Figure 9. Differential Diagnosis of Dizziness (all those in bold = Otolaryngologist’s domain). Function equalization of middle ear pressure aeration and drainage of middle ear restoration of hearing and balance duration - 9 to 18 months.